SE2011 Lock-in Amplifier

Overview

The SE2011 digital lock-in amplifier is the latest core technology product, featuring exceptional high performance and wide bandwidth measurement capabilities. This instrument is based on digital modulation technology and is equipped with a 24-bit high-precision analog-to-digital converter (ADC) and 16-bit high-speed digital-to-analog converter (DAC). With the newly launched LIUXI-architecture, it can accurately, quickly, and flexibly detect effective signal components hidden in strong noise.

The SE2011 is capable of simultaneously measuring the amplitude and phase information of input signals. It achieves international leading levels in key performance indicators such as measurement accuracy, operating frequency range, signal-to-noise ratio, and dynamic reserve. Additionally, the newly added multi-harmonic measurement, oscilloscope, spectrum analyzer functions, and PID control capabilities make the SE2011widely applicable to various needs in scientific research and industrial fields.

Digital Demodulator

The SE2011 has 8 synchronized demodulators, which can be independently controlled. The time constant of the SE2011 can be flexibly set within the range of 100 ns to 3 ks, allowing users to customize the time constant according to their needs. The filter's roll-off rate can be selected from 6 to 48 dB/oct in 8 steps. Using digital modulation technology and advanced filter structures. The SE2011 offers higher dynamic reserve (>130 dB), more precise phase (absolute phase error < 1°), zero DC drift, and excellent orthogonal

Key Features

- Frequency range from DC to 1.5 MHz
- Input noise as low as $2.5 \text{nV}/\sqrt{\text{Hz}}$
- Input range from 1 nV to 5 Vrms
- Time constants from 100ns to 3ks
- Dynamic reserve > 130dB
- 8-channel synchronous demodulators
- Spectrum analysis, oscilloscope function
- 2-channel PID controllers

performance compared to traditional analog lock-in amplifiers. Additionally, the SE2011 provides an optional synchronous filter that can quickly eliminate the effects of signal harmonics, ensuring that the instrument accurately detects low-frequency signals while responding rapidly.

Input Signal Channel

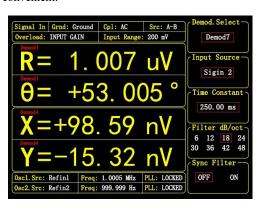
The SE2011 is equipped with a low-noise analog amplifier that efficiently processes single-ended or differential signals, with an equivalent input noise as low as 2.5 nV/ $\sqrt{\rm Hz}$. The input impedance of this channel is 10 M Ω , and the full-scale range is from 1 nVrms to 5 Vrms. Furthermore, the signal input channel uses a high-precision 24-bit ADC, achieving a dynamic range over 130 dB.

Output Signal Channel

The signal output ports of SE2011is based on a 32 MSPS 16-bit DAC, capable of generating high-precision sine wave signals in the frequency range of 1 Hz to 1.5 MHz, with adjustable DC offset. The signal amplitude range is from 0.1 Vrms to 5 Vrms, and the DC offset range is ±5 Vdc. For external devices requiring bias voltage, such as electro-optic modulators, the SE2011can drive devices directly without the need for additional level conversion amplifiers. The output signal phase is synchronized with the instrument's internal oscillator. It can be independently set for phase offset.

Additionally, the SE2011 supports AM/FM/PM modulation functions, allowing users to perform modulation control of the system.

SE2011Lock-in Amplifier

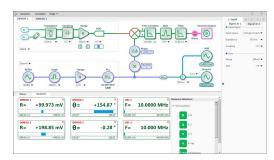

Reference Signal Channel

The reference signal of the SE2021 can be selected as either a sine wave or square wave signal based on user requirements, or it can use an internally digitally synthesized reference signal. When the SE2021 is set to internal reference signal mode, the instrument's internal high-precision oscillator and digital synthesis algorithm generate a sine wave signal for multiplication with the input signal, with the internal reference signal being nearly unaffected by phase noise. Through digital phase shifting technology, the phase resolution of the internal reference signal can reach 1 µdeg.

When the SE2011 operates in external reference signal mode, it accepts sine wave signals or TTL logic levels as external reference signals, which are locked by the internal digital phase-locked loop. Based on the frequency of the reference signal, the SE2011 can detect signals at the fundamental frequency and its harmonics, detecting up to 10,000 times the fundamental frequency. But it provided that the maximum harmonic frequency does not exceed the upper limit of the instrument's measurement bandwidth.

Color Display Screen

The SE2011 features a 5.6-inch TFT color display with a resolution of 640×480 , serving as the main user interface, allowing full independent control of the instrument via keyboard. On the display, users can easily heed parameters such as demodulator X, Y, R, θ , and configure various basic settings like filter constants, making the operation intuitive and convenient.



Communication Interface

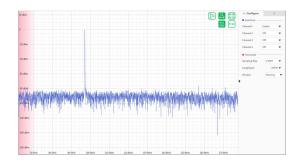
The SE2011 includes USB 2.0, 1000 Mbps RJ45 Ethernet port, WIFI network interface, RS232 serial port, and GPIB interface. Through these interfaces, users can effectively utilize all testing functions of the SE2011on a controlling computer, setting reasonable control parameters and reading the data measured by the instrument.

PC Software

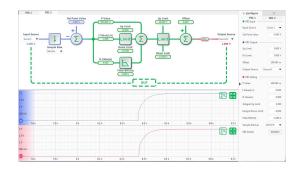
The SE2011 provides professional PC software that allows configuration of each demodulator, input channel, and output channel through schematic diagrams or control panels, combining professionalism and practicality with simplicity and intuitiveness. The software features clear numerical display and real-time waveform display functions. Users can save the measurement results exportable as CSV files for subsequent analysis using professional software, enhancing the ease of testing. Furthermore, we fully support application programming interfaces (API) in Python, MATLAB, and LabVIEW.

Oscilloscope

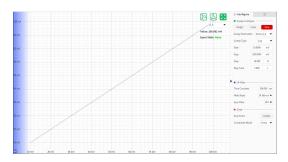
The oscilloscope function features 2 signal channels, selectable for signal input, reference input, signal output, and auxiliary input/output, providing various triggering methods for real-time display of time-domain signals. Each channel has a maximum sampling depth of 65,536 and adjustable sampling durations from 65 μ s to 1 s.



SE2011 Lock-in Amplifier


FFT Spectrum Analyzer

The FFT spectrum analyzer analyzes the frequency domain information of signals based on waveforms captured by the oscilloscope. Depending on the sampling rate and sampling depth, the frequency resolution range of the spectrum analyzer is approximately 1 Hz to 31 kHz.


PID Controllers

The SE2011 has an internal independent 2-channel digital PID controller with a maximum sampling rate of 4 MSPS. The PID controller is closely linked with the lock-in amplifier, controlling the output signal's amplitude, phase, frequency, and other signals based on the measurements from the demodulator, achieving precise control of multiple parameters.

Parametric Scanner

The parameter scanner provides users with convenient quick scanning capabilities, allowing for the instant plotting of frequency response, amplitude response curves, and offering single or loop scanning modes.

SE2011 Lock-in Amplifier

Input Signal Channel

Input Mode

Voltage Single-ended or Differential

Current Single-ended Full-Scale Sensitivity 1 nV to 5 Vrms

Range Levels 2mV to 5V, total 7 levels Input Coupling Mode DC or AC coupling Input Impedance 10 M Ω || 25 pF (Voltage)

 100Ω or $1 k\Omega$ (Current)

Input Shield Grounding Grounding or $10 \text{ k}\Omega$ floating

Dynamic Reserve >130 dB

Gain Accuracy 0.5% typical, 1% max Input Voltage Noise 3.5 nV/ $\sqrt{\text{Hz}}$ (f \geq 1 kHz)

 $2.5 \text{ nV}/\sqrt{\text{Hz}} \text{ (f} \ge 10 \text{ kHz)}$

Input Current Noise $20 \text{ fA}/\sqrt{\text{Hz}} \text{ (f = 97Hz)}$

ADC Bit 24 bit

Reference Signal Channel

Reference Channel Number 2

Reference Signal

Frequency Range $10 \mu Hz - 1.5 MHz$ Supported Waveform Square or sine wave

Input Impedance $1 \text{ M}\Omega$

Reference Levels

Square $3V < V_{IH} < 5V, -0.1V < V_{IL} < 0.5V$

Sine Frequency > 1 Hz

 $300 \text{ mV} < V_{pp} < 10 \text{ V}$

Phase

Resolution 1.0 µdeg

Phase Error ± 0.5 deg typical, ± 1 deg max

Temperature Drift < 200 ppm/°C

Harmonic Detection 1-10000F (nF < 1.5 MHz)

Acquisition Time

Internal Reference Instantaneous acquisition
External Reference 10 or 100 signal cycles

Oscillator

Oscillator Number 2

Oscillator Parameters

Accuracy 0.3 ppm
Temperature Stability 0.5 ppm / °C
Aging Rate <1 ppm/year

Phase Noise -145 dBc/Hz (@1kHz)

Communication Interfaces

RS-232 DB-9 female interface

USB2.0 480 Mbpshigh-speed interface

Ethernet RJ45-1000Mbps

wireless network interface

GPIB IEEE-488.2interface

Output Signal Channel

 $\begin{array}{ll} Frequency\ Range & DC-1.5MHz \\ Frequency\ Accuracy & 2\ ppm+1\ \mu Hz \end{array}$

Frequency Resolution 1 nHz

Sine Amplitude 0.1 μVrms to 5 Vrms
Accuracy 0.5% typical, 2% max

Resolution 0.1 μVrms
Driving Current \pm 80 mA max
Temperature Stability <200 ppm/°C

Output Impedance 50Ω

Adjustable DC Offset -5 V_{DC} to 5 V_{DC}

Synchronous Output 3.3V TTL/CMOS level

output impedance 50 Ω

Additional Features AM/FM/PM modulation output

DAC Parameter 16 bit, 32 MSPS

Demodulator

 $\begin{array}{lll} Demodulator \ Number & 8 \\ \\ Demodulator \ Bit & 64 \ bit \\ \\ Time \ Constant & 100ns - 3ks \\ \\ Measurement \ Bandwidth & 50 \ \mu Hz - 1.6 \ MHz \end{array}$

Filter Slope (dB/oct) 6, 12, 18, 24, 30, 36, 42, 48

Synchronous Filter <1000 Hz effective

Auxiliary Inputs/Outputs

AUX Input

Function 4-channel input

Amplitude $\pm 10V$, 0.1 mV resolution

Input Impedance $1M\Omega$

ADC 16 bit, 150 kSPS

AUX Output

Function 4-channel output

Amplitude $\pm 10V$, 0.1 mV resolution

Driving Current $\pm 30 \text{ mA max}$ DAC 16 bit, 500 kSPS

Others

Power Supply

Voltage 220~240 V AC

100~120 V AC(optional)

Power 50 W typical, 70 W max

Power Noise Suppression 70dB@1MHz

Dimensions 448mm×532mm×148mm

Weight 12 kg